Induced motion in depth and the effects of vergence eye movements.
نویسندگان
چکیده
Induced motion is the false impression that physically stationary objects move when in the presence of other objects that really move. In this study, we investigated this motion illusion in the depth dimension. We raised three related questions, as follows: (1) What cues in the stimulus are responsible for this motion illusion in depth? (2) Is the size of this illusion affected by vergence eye movements? And (3) are the effects of eye movements different for motion in depth and for motion in the frontoparallel plane? To answer these questions, we measured the point of subjective stationarity. Observers viewed an inducer target that oscillated in depth and a test target that was located directly above it. The test target moved in phase or out of phase with the inducer, but with a smaller amplitude. Observers had to indicate whether the test target and the inducer target moved in phase or out of phase with one another. They were asked to keep their eyes either on the test target or on the inducer. For motion in depth, created by binocular disparity and retinal size change or by binocular disparity alone, we found that when the eyes followed the inducer, subjective stationarity occurred at approximately 40-45% of the inducer's amplitude. When the eyes were kept fixated on the test target, the bias decreased tenfold to around 4%. When size change was the only cue to motion in depth, there was no illusory motion. When the eyes were kept on an inducer moving in the frontoparallel plane, induced motion was of the same order as for induced motion in depth, namely, approximately 44%. When the induced motion was in the frontoparallel plane, we found that perceived stationarity occurred at approximately 23% of inducer's amplitude when the eyes were kept on the test target.
منابع مشابه
Cue conflict between disparity change and looming in the perception of motion in depth
We hypothesized that it is the conflict between various cues to distance that have produced results purportedly showing that vergence eye movements induced by disparity change are not an effective cue for depth. Single and compound stimuli were used to examine the perceived motion in depth (MID) produced by simulated motion oscillations specified by disparity, relative disparity, and/or looming...
متن کاملBinocular eye movements evoked by self-induced motion parallax.
Perception often triggers actions, but actions may sometimes be necessary to evoke percepts. This is most evident in the recovery of depth by self-induced motion parallax. Here we show that depth information derived from one's movement through a stationary environment evokes binocular eye movements consistent with the perception of three-dimensional shape. Human subjects stood in front of a dis...
متن کاملVisual field defects for vergence eye movements and for stereomotion perception.
An objective visual field can be mapped in terms of stimulus-induced eye movement. The authors used the scleral coil technique to record vergence and conjugate eye movements while stimulating different visual field locations with a 3 X 3 deg target whose image vergence was oscillated. For each of three subjects tested there was a visual field location where vergence eye movements were much weak...
متن کاملDischarge characteristics of pursuit neurons in MST during vergence eye movements.
For small objects moving smoothly in space close to the observer, smooth pursuit and vergence eye movements maintain target images near the foveae to insure high-resolution processing of visual signals about moving objects. Signals for both systems must be synthesized for pursuit-in-three-dimensions (3D). Recent studies have shown that responses of the majority of pursuit neurons in the frontal...
متن کاملThe interaction of eye movements and retinal signals during the perception of 3-D motion direction.
When an object is tracked with the eyes, veridical perception of the motion of that object and other objects requires the brain to take account of and compensate for the eye movement. Here, I explore the effects of version and vergence eye movements on three-dimensional (3-D) motion perception. After demonstrating that eye movement compensation can be poor for detecting small objects moving in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of vision
دوره 8 3 شماره
صفحات -
تاریخ انتشار 2008